MOS小信号模型
Notations
Understanding the concept of small signal model
Transient response
\[
v_{in} = v_a \sin \omega t
\]
\[
v_{out} = -i_dR_d = -\mu_n C_{ox} \frac{W}{L} (V_{GS} - V_{TH})v_a \sin \omega t
\]
Amplification factor: \(\mu_n C_{ox} \frac{W}{L} (V_{GS} - V_{TH})\)
Transconductance of MOS
\[
g_m = \mu_n C_{ox} \frac{W}{L} (V_{GS} - V_{TH}) = \sqrt{2 \mu_n C_{ox} \frac{W}{L} I_D} = \frac{2I_D}{V_{GS}- V_{TH}}
\]
Three elements for calculating \(g_m\)
- There are only two independent elements in \(W/L\), \(I_D\) and \(V_{GS} - V_{TH}\).
- Any one can be derived from the other two.
Ideal small signal model of MOS
Second order effect
Body effect
当\(V_{S}\)大于\(V_{B}\)时,会发生什么?\(V_{TH}\)变大。
\[
V_{T H}=V_{T H 0}+\gamma\left(\sqrt{\left|2 \Phi_F+V_{S B}\right|}-\sqrt{\left|2 \Phi_F\right|}\right)
\]
\(\gamma\) is called the body effect coefficient, 跟工艺有关。
Influence of body effect on small signal model: \(g_{mb}\)
\(g_{mb}\): body transconductance
\[
g_{mb} = \frac{\partial I_D}{\partial V_{SB}}
\]
Channel length modulation effect
- A NMOS operating in the saturation region with large enough length
- \(I_D\) is independent of \(V_{DS}\).
- MOS成为理想电流源。
- Infinite output resistance(因为两端电压变化后,电流却不变)
The influence of \(V_{DS}\) on \(I_D\) is called channel length modulation effect.
\[
I_D \approx \frac{1}{2} \mu_n C_{o x} \frac{W}{L}\left(V_{G S}-V_{T H}\right)^2\left(1+\lambda V_{D S}\right)
\]
沟道长度调制效应的结果是,即使在饱和区,漏极电流(\(I_D\))依然轻微依赖于漏极电压(\(V_{DS}\))
定义finite output resistance \(r_o\), \(g_{ds} = \frac{1}{r_o}\)
\[
r_{o}=\frac{1}{\lambda I_{D}}
\]
Important note:
MOS small-signal output resistance can be changed by adjusting bias current \(I_D\), or transistor length \(L\).